Los resultados obtenidos señalan la posibilidad de que se produzca una modificación en el equilibrio de este gas de efecto invernadero que se genera debido a la descomposición microbiana de la materia orgánica
Las condiciones extremas de temperatura y humedad (lluvias excesivas o sequías) pronosticadas para la región amazónica en el contexto de los cambios climáticos pueden incrementar el volumen de microorganismos productores de metano en las zonas inundadas y disminuir en hasta un 70 % el potencial de consumo de ese gas de efecto invernadero en los bosques de tierra firme, con los consiguientes impactos globales.
Esta conclusión surge de un estudio realizado por científicos de la Universidad de São Paulo (USP), en Brasil, y publicado en la revista Environmental Microbiome. Los resultados a los que arribaron, según los propios autores de la investigación, refuerzan la necesidad de implementar políticas de conservación y manejo.
Durante al menos seis meses del año, más de 800.000 kilómetros cuadrados de llanuras de la selva amazónica −equivalentes al 20 % de su extensión total– se inundan debido a las precipitaciones. El consiguiente aumento del volumen de los ríos genera las condiciones anaeróbicas ideales (ausencia de oxígeno) para el aumento de la producción de metano, fruto de la descomposición microbiana de materia orgánica. De acuerdo con estudios recientes, las áreas inundables de la Amazonia pueden ser responsables de hasta un 29 % de las emisiones globales de este gas de efecto invernadero. En contraste, se sabe acerca de la capacidad de los bosques de tierra firme de la región para captar metano de la atmósfera, con lo cual cumplen un papel importante en la regulación de las emisiones.
“Si bien ya se ha comprobado que factores tales como la temperatura atmosférica y las condiciones estacionales de inundación son capaces de influir sobre la composición de las comunidades microbianas y por consiguiente sobre el flujo de metano en esos ambientes, ¿qué podríamos esperar ante el panorama de cambios climáticos, si se tienen en cuenta los escenarios de alteraciones en los patrones de lluvias y de temperatura, con extremos más intensos?”, se pregunta Júlia Brandão Gontijo, investigadora posdoctoral en la Universidad de California en Davis, Estados Unidos, y autora principal del artículo.
La investigación, apoyada por la FAPESP en el marco de tres proyectos (14/50320-4, 18/14974-0 y 19/25924-7), se llevó a cabo aún durante el doctorado de Brandão Gontijo en el Centro de Energía Nuclear en la Agricultura (Cena) de la USP, bajo la dirección de la profesora Tsai Siu Mui. “Ya sabemos que la concentración atmosférica de este gas aumentó aproximadamente un 18 % durante las últimas cuatro décadas en términos globales”, comenta la directora del trabajo.
Fue esa la combinación que Brandão Gontijo puso a prueba en colaboración con científicos de la Real Academia de Artes y Ciencias de los Países Bajos, de las universidades Stanford, en California, de Massachussets y de Oregon (Estados Unidos) y Federal del Oeste de Pará (Brasil). En un experimento que se extendió durante 30 días, la investigadora sometió muestras de suelo de dos llanuras de inundación y de un bosque de tierra alta de los municipios de Santarém y Belterra, situados en la zona centro-oeste del estado de Pará, a temperaturas (27 °C y 30 °C) y condiciones de humedad extremas.
Julia Moióli - FAPESP